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The use of hyperbol ic- type hea t - t r ans fe r  equations in an acoustic wave is considered. Acoustic 
dispersion is calculated. Theoret ical  resul ts  are compared  with experimental  data on the coef-  
ficient of absorption for ul t rasonic  waves in cas tor  oil. 

1. T h e r m a l - C o n d u c t i v i t y  E q u a t i o n  

Acoustic motions are  a special  case of hydrodynamic flows, so it follows that they may be calculated 
from the closed sys tem of equations of hydrodynamics :  

dV 
--  grad p @ pV W + ~ grad div V, P dt d 

continuity: 

state: 

(1.1) 

~ d  
--~-~ -~ p div V = 0, (1.2) 
dt 

and energy:  

p=cp(p,  T), (1.3) 

dT (1.4) 
Pcv dr-  + p div V = - -  div q. 

These equations consider  the well-known Stokes hypothesis on the relationship of shear  and volume 
viscosi t ies .  

With re fe rence  to acoust ics ,  con temporary  scientis ts  dispute the validity of the equations of motion and 
state. In the equations of motion a volume viscosi ty totally unrelated to shear  viscosi ty  is introduced. 
Unfortunately, there  are  no means of obtaining the numer ica l  value of this quantity other than acoustic experi-  
ments,  which are  the reasons  for  its existence inthe f i rs t  place. But this has disturbed no one, and the idea of a volume 
viscosi ty  has been so f i rmly entrenched in con temporary  molecular  acoust ics  that one of the essential  tenets 
of hydrodynamics  has been neglected, whereby the deformation produced by isotropic compress ion  Of vol-  
ume cannot be separa ted  f rom deformation of its form.  Thus, in analysis of any hydrodynamic process  
this fact should be stipulated, and if there  is a des i re  to negate the Stokes postulate, the latter must  be r e -  
placed by something. Meanwhile, no worker  in con temporary  molecular  acoust ics  has acknowledged that a 
c lear  contradict ion exists in this mat te r .  

The disputed aspect  of the equation of state is the introduction of an additional pa ramete r ,  which in the 
equilibrium state is a function of specific volume and temperature .  In the general  case the p a r a m e t e r  obeys 
some reaction equation. 

However,  another question may be put: In what form may the energy equation be used, without affecting 
the form of the equation of liquid motion and its equation of state? Indeed, such an alternative is also possible. 

It is pertinent to recall that while refining the Stokes formula, in calculating acoustic dispersion Kirchhoff 
completed the energy equation in accordance with the Fourier hypothesis 
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TABLE 1. Thermal  Wave Velocity for  Various Substances 

Substance t Fre'queney~-5 Ml-Iz t3 �9 10 s sec G, m/see go, m/sec 

Air ! 0, t3.2--0,4 
Carbon dioxide O, 304 
Water j 7---250 

0,98--I ,69 
1,93 
1,27 

162--132 
20,1 
3, 32 

327 
259 

1490 

q ---- -- Lgrad T. (1.5) 

In discussing this step he s t r e s sed  that the quantity of heat is measured  by that t empera tu re  increase  which 
occurs  in the absence of compress ion.  In other words,  the acoustic action does not affect thermal  motions 
of the mate r ia l  system. However,  the acoustic action may also be such that internal heat t r ans fe r  between 
atomic groups of the molecules  is disrupted. In this case the validity of Eq. (1.5) is doubtful. With respect  
to this we note that use of Eq. (1.5) implies an explicit dependence of thermal  flux vec tor  q on coordinates.  

We propose  that the acoustic action on internal  heat t r ans fe r  occurs  in a manner  such that the thermal  
f luxvector  becomes an explicit function of t ime; i . e . ,  q = q(x, Y, z, t). We now differentiate the left and 
rights sides of Eq. (1.4) with respec t  to time: 

c v -~- p q- (p div V) = -- 0--/ 

We multiply this equation by some quantity ~ and add the expression so obtained to Eq. (1.4). Then we have 

e 0 dT 0 (p div V) q- p div V = -- div Q. + ~ dT (1.6) 

Here  the additional notation 

O(x, y, z ) = q + [ ~  0q 
Ot 

(1.7) 

is used. We assume that vec tor  Q is a function of coordinates  only and that the Four i e r  hypothesis may be 
applied to it; we then rewri te  Eq. (1.6) as follows: 

(JCv--~ P - ~  +pco--~-+~ (pdivV)+pdivV=~.v~T.  (1.8) 

Here  together  with the normal  coefficient of thermal  conductivity A there  appears  the new pa rame te r  ~. If 
= 0, then Eq. (1.8) t r ans fo rms  into a parabol ic- type  equation. 

Equation (1.8) must  be used when solutions of the c lass ica l  equation of heat t r ans fe r  contradict  experi-  
ment. In this case,  by using solutions of Eq. (1.8) and selecting a cer ta in  value for the pa r ame te r  ~, the 
contradict ion between theory and experiment  may be eliminated. Determining fi in this manner  and finding 
the constants  by normal  measurement  techniques, we may determine the velocity of a thermal  wave with the 
following formula:  

G 2 = ~  =--a. (1.9) 
oq.P 1~ 

If we concre t ize  the equation of state in the Clapeyron form 

p = pRT, 

then with considerat ion of the equation of continuity it can be shown that 

d r  dp 
pdivV = Rp 

dt dt 

We then give to the hea t - t r ans fe r  equation the form 

~c_t_p . 0 ( dT ) ~ 0 dp dT p 
pc v Ot P --~ pc~ Ot dt + -~- +pc.  divV=av~T. 

(1.1o) 
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T A B L E  2. C o m p a r i s o n  of T h e o r y  and E x p e r i m e n t  

0 ~ , C 1 0  ~ , C 

~-.I o,,, $ec2/cm -~-~. I 0 ta , sec2/cm 
v, MHz 

0,26 , 
O, 38 
O. 59 
0,90 
2.10 
3,30 
6,5 
8,78 

12,04 
20,02 
30,22 

experiment theory 

5,6 5,5 
4,5 4,6 
3.,93 3,76 
3,0 3,1 
2,3 2,2 
1,66 1,7 
1,21 1,4 
1,15 1,2 
0,98 1,06 
0,87 0,89 
0,76 0,78 

experiment theory 

2,81 2,8 
2,63 2,38 
2,3 1,95 
t,73 1,64 
1,22 1,21 
1,00 1,01 
0,795 0,8! 
0,74 0, 73 
0,608 0,66 
O, 625 O, 58 
O, 569 O, 53 

2. A c o u s t i c  D i s p e r s i o n  C a l c u l a t i o n  

W e  wi l l  c o n s i d e r  the  c a s e  of o n e - d i m e n s i o n a l  a c o u s t i c  m o t i o n s .  
r e w r i t e  the  b a s i c  s y s t e m  of  equa t i ons  a s  fo l lows :  

Ou Op 4 02u 
P 0--7 = - ' 

Ou Op _+_ p - - 0 ,  
o-5- 

7~ 02T ~ 02P 4- OT p Ou 02T 

Ot ~ pc~ Ot - 7  ' 0--7- + pc. " Ox --  a Ox 2 -  , 

P = �9 (9, T). 

We u s e  H a d a m a r d ' s  a l g o r i t h m  fo r  c a l c u l a t i o n  of a c o u s t i c  d i s p e r s i o n .  
to a c o u s t i c  p r o b l e m s  a r e  p r e s e n t e d  in [1]. 

Then ,  n e g l e c t i n g  a c o u s t i c  wind,  we 

(2.1) 

D e t a i l s  of t h i s  a l g o r i t h m  wi th  r e f e r e n c e  

With the aid of homologous and kinematic Hugoniot--Hadamard conditions we rewrite the system of 

equations as  fo l lows:  

con t inu i ty  equa t ion :  

~lpg = PLI~,, 

equa t ion  of mot ion :  

X l p = p ~ l u ( g +  4 ~ ~2 , ]  
�9 3 P ~'1,, 

(2.2) 

equa t ion  of s t a t e .  

Lip O p ~lr  Op 

e n e r g y  equa t ion :  

r  p-g  . 

The  b a s i c  quan t i t y  which  i n t e r e s t s  us  in a c o u s t i c  p h e n o m e n a  i s  the  f ron t  d i s p l a c e m e n t  v e l o c i t y  g. 

To e l i m i n a t e  a r b i t r a r y  d i s c o n t i n u i t y  p a r a m e t e r s  f r o m  Eq. (2.2) i t  i s  n e c e s s a r y  to add the  cond i t ion  
of p e r i o d i c i t y  in t i m e  of v e l o c i t y ,  t e m p e r a t u r e ,  and p r e s s u r e .  I t  i s  s i m p l e  to  show tha t  t h i s  cond i t ion  has  
the  f o r m  

kl~ ~i T kl~ g 

1103 



TABLE 3. N u m e r i c a l  Values of Exper imenta l  Constants 

~  0 10 2 0  3 0  4 0  

f 
B.10 I~ 26,6 ] 12,7 
C.IO Is 0,31 ] 0,3 

I 
8,15 ] 5,49 
O, 185 ] O, 085 

3, 03 
o, 08 

After  eliminating the discontinuity p a r a m e t e r s  f rom Eq. (2.2), we will have 

Here the notation 

g~(t+ico[~)=g2 ~ 4 ~t ao~2_4__.~_~_o~[ ~ 
3 p g~ 3 p 

ap p ap ap 

is used. In o rde r  to separa te  rea l  and imaginary  par t s  of the equation we take 
[ �9 

g ---- & ~- tg 2. 

Considering that g2 << gt and dropping second-o rde r  t e r m s  [1], we obtain instead of Eq. 

gg 

4 ~ + ( y - - l )  
�9 - -  a {-~- 

The formula  for  acoustic  wave amplitude may be writ ten as 

A = Ao exp [ io ( t - g~Xg"~- g~ ,) l exp ( 

It is now simple to find the coefficient  of sound wave absorption: 

~o& og 2 

o r ,  

(2.3) 

(2.4) 

(2.3) 

(7 -- !)(~ '~ -- ]) Pg0 ] (2.5) I 

J 7 

g~+g~]" 

defining gi and g2 f rom Eq. (2.5), we obtain 

r [ 4  _~_F Y - 1  a + - ( 7 - - 1 ) ( 7 ~ - - 1 )  [3g~]. (2.6) 
2 t3- o v r 

If p = 0, then Eq. (2.6) transforms to the Stokes--Kirehhoff formula, but it follows from Eq. (1.9) that in this 
case the thermal wave velocity is infinite; i.e., the parabolic heat-transfer equation describes the process of 
wave propagation at infinite velocity. However, as a rule, natural heat-propagation processes possess inertia. 
It is thus possible that numerical values of ~ obtained from the Stokes--Kirchhoff formula will not coincide 
with experimental data even at frequencies where acoustic dispersion is absent. If we transform from angular 
frequency co to cyclical frequency u, then with consideration of Eq. (1.9) we may rewrite Eq. (2.6) as 

v~ = (~-2) o ~' 2n-gJY----Tgol)(Tz- 1) .G 2a (2. 7) 

Here  additional notation has been introduced for  the Stokes--Kirchhoff formula  

('r =:--2a2( 4 ~t I ( 7 - - 1 ) ) a  . (2.8) 

Knowing the di f ference between exper imenta l  values of offu 2 and those calculated by Eq. (2.8), we can 
de te rmine  the t he rma l  wave velocity G. Results  of such calculations are  p resen ted  in Table 1 for  severa l  
gases  at 0~ and wate r  at 20~ Exper imenta l  values of a/u 2 were taken f rom [2] and values of the the rmal  
diffusivity and heat capacity coeff icients ,  f rom thermophysica l  measurements .  

In analogy to the speed of sound, the speed of a thermal  wave may depend on frequency; i . e . ,  t he rmal  
d ispers ion  can exist.  Calculation of such a dependence is  difficult at present ,  but it  may  be guessed by 
analysis  of exper imenta l  data. We assume that 
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1 
6~ 

-- b~-{- ~ : - .  (2.9) 

Then we give to Eq. 

where  

(2.7) the fo rm 

_~a = B + C ,  (2.10) ~'~ 1~ 

B --_ 2n2 (7 - - 1 ) ( 7 *  - -  l ) ab~; C = ( ~ { )  + b  r 
7g0 0 

Equation (2..10) provides  a good descr ip t ion  of the exper imenta l  r e su l t s  of [3] on the absorpt ion coeff i -  
cient  of u l t rason ic  waves  in c a s t o r  oil ove r  a wide f requency range. The c h a r a c t e r  of the ag reemen t  between 
theory  and exper iment  is  demons t r a t ed  by Table  2. Table  3 shows values of the constants  ]3 and C, d e t e r -  
mined by application of Eq. (2.10) to expe r imen ta l  resul t s .  

It is in teres t ing that  in [4] the following f requency dependence of the ul t rasound absorpt ion  coefficient  was 
found in an aqueous solution of polyethylene oxide: 

1 

~- V~'  

which does not cont rad ic t  Eq. (2.10). In this  case  the constants  ]3 and C will be functions of concentra t ion and 
concentra t ion  waves  should be considered.  

N O T A T I O N  

~, v iscosi ty ;  k,  t h e r m a l  conductivity; a, t h e r m a l  diffusivity; Cv, heat  capaci ty  at constant  volume; Cp, 
heat  capaci ty  at constant  p r e s s u r e ;  ~, heat  capaci ty  rat io;  R, un ive r sa l  gas  constant;  klu, k ip  , kip , k iT  , 
f i r s t - o r d e r  discontinuity p a r a m e t e r s ;  k 2u, k2p, k 2p, k 2T, s econd -o rde r  discontinuity p a r a m e t e r s ;  go, La-  
placian value of veloci ty  of sound. 
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