CHARACTER OF HEAT TRANSFER IN AN
ACOUSTIC WAVE

V. A. Bubnov UDC 536.24.01
The use of hyperbolic-type heat-transfer equations in an acoustic wave is considered. Acoustic
dispersion is calculated. Theoretical results are compared with experimental data on the coef-

ficient of absorption for ultrasonic waves in castor oil.

1. Thermal-Conductivity Equation

Acoustic motions are a special case of hydrodynamic flows, so it follows that they may be calculated
from the closed system of equations of hydrodynamics:
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and energy:
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These equations consider the well-known Stokes hypothesis on the relationship of shear and volume
viscosities,

With reference to acoustics, contemporary scientistsdispute the validity of the equations of motion and
state. In the equations of motion a volume viscosity totally unrelated to shear viscosity is introduced.
Unfortunately, there are no means of obtaining the numerical value of this quantity other than acoustic experi-
ments, which are the reasons for its existence inthe first place. But this hasdisturbed noone, and the idea of a volume
viscosity has been so firmly entrenched in contemporary molecular acoustics that one of the essential fenets
of hydrodynamics has been neglected, whereby the deformation produced by isotropic compression of vol-
ume cannot be separated from deformation of its form. Thus, in analysis of any hydrodynamic process
this fact should be stipulated, and if there is a desire to negate the Stokes postulate, the latter must be re-
placed by something, Meanwhile, no worker in contemporary molecular acoustics has acknowledged that a
clear contradiction exists in this matter,

The disputed aspect of the equation of state is the introduction of an additional parameter, which in the
equilibrium state is a function of specific volume and temperature. In the general case the parameter obeys
some reaction equation.

However, another question may be put: In what form may the energy equation be used, without affecting
the form of the equation of liquid motion and its equation of state? Indeed, such an alternative is also possible.

Itis pertinent to recall that while refining the Stokes formula, in calculating acoustic dispersion Kirchhoff
completed the energy equation in accordance with the Fourier hypothesis
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TABLE 1. Thermal Wave Velocity for Various Substances

Frequency' v,

. 8
Substance l Mz B +10%sec 1 G, m/sec 8o m/sec
Air l 0,132—0,4 I 0,98—1,69 162132 | 327
Cotbon dioxide | 0304 | 19 20,1 | 259
Water ] 7250 l 1,27 l 3,32 1 1490
q=—hgradT. (1.5)

In discussing this step he stressed that the quantity of heat is measured by that temperature increase which
occurs in the absence of compression. In other words, the acoustic action does not affect thermal motions
of the material system. However, the acoustic action may also be such that internal heat transfer between
atomic groups of the molecules is disrupted. In this case the validity of Eq. (1.5) is doubtful. With respect
to this we note that use of Eq. (1.5) implies an explicit dependence of thermal flux vector q on coordinates.

We propose that the acoustic action on internal heat transfer occurs in a manner such that the thermal
flux vector becomes an explicit function of time; i.e., g = q(%, ¥, 2, t). We now differentiate the left and
rights sides of Eq. (1.4) with respect to time:

o0 (4T
ot \°

We multiply this equation by some quantity $ and add the expression so obtained to Eq. (1.4). Then we have

ad . d
—(pdivV) = — — divq.
)+ 2 (paiv¥) = — -2 divg

ﬁev%(p %) +ﬁ—§7(pdiv\’)—,l—pcv%§ + pdivV = —divaQ. (1.6)

Here the additional notation

Qlx, v, z)=q+ﬁ—g% (L7

is used. We assume that vector Q is a function of coordinates only and that the Fourier hypothesis may be
applied to it; we then rewrite Eq, (1.6) as follows:

0 dr dar 0 . .

c,— [p — - —(pdivV divV = Ay*T. (1.8)
B 3 (p dt)+pc dt+ﬁat(p )+p v

Here together with the normal coefficient of thermal conductivity A there appears the new parameter 5. If

B = 0, then Eq. (1.8) transforms into a parabolic-type equation,

Equation (1.8) must be used when solutions of the classical equation of heat transfer contradict experi-
ment. In this case, by using solutions of Eq. (1.8) and selecting a certain value for the parameter B, the
contradiction between theory and experiment may be eliminated. Determining § in this manner and finding
the constants by normal measurement techniques, we may determine the velocity of a thermal wave with the
following formula:

G 2 (1.9)
pc B
If we concretize the equation of state in the Clapeyron form
p=pRT,
then with consideration of the equation of continuity it can be shown that
. dTr dp
divV = Rp—— — L2,
P u T

We then give to the heat-transfer equation the form

ﬁﬁp_ _a_( ﬂ)__ﬁ_ _q_ EP_ ﬂ Ld'v\{:a T (1.10)
oo, G \Pd ) e o at T e, @ v
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TABLE 2. Comparison of Theory and Experiment

v, C 10°, C
—:‘;—-10“. sect/cm %,—-10".secz/cm
v, MHz |
eXperiment theory eXperiment theory
0,26 . 5,6 5,5 2,81 2,8
0,38 4,5 4,6 2,63 2,38
0.59 3,93 3,76 2,3 1,95
0,90 3,0 3,1 1,73 1,64
2.10 2,3 2,2 1,22 1,21
3,30 1,66 1,7 1,00 1,01
6.5 1,21 1,4 0,795 0,81
8,78 1,15 1,2 0,74 0,73
12,04 0,98 1,06 0,608 0,66
20,02 i 0,87 0,89 0,625 0,58
30,22 | 0,76 0,78 0,569 0,53

2. Acoustic Dispersion Calculation

We will consider the case of one-dimensional acoustic motions. Then, heglecting acoustic wind, we
rewrite the basic system of equations as follows:

ou op 4 u
P T o T e
dp ou
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ar® pc, Of ot ec, Ox Ox®
p=a(o, T).

We use Hadamard's algorithm for calculation of acoustic dispersion. Details of this algorithm with reference
to acoustic problems are presented in [1).

With the aid of homologous and kinematic Hugoniot—Hadamard conditions we rewrite the system of
equations as follows:

continuity equation:

Mo€ = Oy,
equation of motion:

4 n A
he = ph ( _____2&), (2.2)
1p = PP1y \g -+ 3 0

equation of state:
My _ Op Mr Op
My 9 M, OT ’

energy equation:

Pg 4 _» }\"ia'—- 2 h.ﬁ_gz_.h—p— .
B u[g+m( we) + e B

The basic quantity which interests us in acoustic phenomena is the front displacement velocity g.

To eliminate arbitrary discontinuity parameters from Eq. (2.2) it is necessary to add the condition

of periodicity in time of velocity, temperature, and pressure. It is simple to show that this condition has
the form
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TABLE 3. Numerical Values of Experimental Constants

Temperature, ! l

o 0 10 20 30 .0
B.101r ] 26,6 i 12,7 l 8,15 l 5,49 3,03
C-1013 0,31 0,3 0,185 0,085 0,08

After eliminating the discontinuity parameters from Eq. (2.2), we will have

. 4 2 4
gl+iop) =g+ Fop
3 p & 3 p
4 p ( g%) Yi—141 ]
il —— -1 hELLE AR S i (2.3
Here the notation
g%, p % _ % (2.4)

is used, In order to separate real and imaginary parts of the equation we take
g=2g 118
Considering that g, << g, and dropping second-order terms [1], we obtain instead of Eq, (2.3)
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3 p ¥
The formula for acoustic wave amplitude may be written as
A=A exp[iw(f—— ?xgl - ) exp(———-wgzx ) .
’ gi gt g +gb
It is now simple to find the coefficient of sound wave absorption:
“gy og,
o= —— ot R
gi+g 4
or, defining g; and g, from Eq. (2.5), we obtain
2[4 —1 —)y*—1 9
_‘_%{_ﬂ_%_y a_;_‘(‘V Wy ) ﬁg&]- (2.6)
2¢0 13 p v ¥

If g = 0, then Eq, (2.6) transforms to the Stokes—Kirchhoff formula, but it follows from Eq. (1.9) that in this
case the thermal wave velocity is infinite; i.e,, the parabolic heat-transfer equation describes the process of
wave propagation at infinite velocity, However, as a rule, natural heat-propagation processes possess inertia,
It is thus possible that numerical values of o obtained from the Stokes—Kirchhoff formula will not coincide
with experimental data even at frequencies where acoustic dispersion is absent. If we transform from angular
frequency w to cyclical frequency v, then with consideration of Eq. (1.9) we may rewrite Eq. (2.6) as

L2 (1) L=l e (2.7)
v vi o Y8o G*
Here additional notation has been introduced for the Stokes—Kirchhoff formula
ey 24 p (=D a), (2.8)
(\vz)o g3(3p B

Knowing the difference between experimental values of a/v? and those calculated by Eq. (2.8), we can
determine the thermal wave velocity G. Results of such calculations are presented in Table 1 for several
gases at 0°C and water at 20°C, Experimental values of a/v? were taken from [2] and values of the thermal
diffusivity and heat capacity coefficients, from thermophysical measurements,

In analogy to the speed of sound, the speed of a thermal wave may depend on frequency; i e., thermal
dispersion can exist, Calculation of such a dependence is difficult at present, but it may be guessed by
analysis of experimental data. We assume that
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Then we give to Eq, (2.7) the form
a B
—_— = — C, 2- 10
=it (2.10)

where

g 2= —Daby, o (1) + by
4o : ML

Equation (2.10) provides a good description of the experimental results of {3] on the absorption coeffi-
cient of ultrasonic waves in castor oil over a wide frequency range. The character of the agreement between
theory and experiment is demonstrated by Table 2. Table 3 shows values of the constants B and C, deter-
mined by application of Eq, (2.10) to experimental results,

It is interesting that in {4] the following frequency dependence of the ultrasound absorption coefficient was
found in an agueous solution of polyethylene oxide:

o i

Rl vk
which does not contradict Eq. (2.10). In this case the constants B and C will be functions of concentration and
concentration waves should be considered.

NOTATION

p, viscosity; A, thermal conductivity; a, thermal diffusivity; cy, heat capacity at constant volume; cp,
heat capacity at constant pressure; vy, heat capacity ratio; R, universal gas constant; Ay, ’\1p’ Mps AT,
first-order discontinuity parameters; Ay, Ajp, Ayps AT, second-order discontinuity parameters; gy, La-
placian value of velocity of sound, '
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